Shallow-ocean methane leakage and degassing to the atmosphere: triggered by offshore oil-gas and methane hydrate explorations

نویسندگان

  • Yong Zhang
  • Wei-Dong Zhai
چکیده

Both offshore oil-gas exploration and marine methane hydrate recovery can trigger massive CH4 release from seafloor. During upward transportation of CH4 plume through water column, CH4 is subjected to dissolution and microbial consumption despite the protection of hydrate and oil coating on bubbles surface. The ultimate CH4 degassing to the atmosphere appears to be water-depth dependent. In shallow oceans with water depth less than 100m, the natural or human-induced leakages or both lead to significant sea-to-air CH degassing from 3.00 to 1 36 105 mol m−2 − × 4 . μ d 1. To quantify the human-perturbation induced CH4 degassing, the combination of top-down modeling and bottom-up calculations is essential due to spatial and temporal variability of diffusion and ebullition at water-air interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methane in shallow subsurface sediments at the landward limit of the gas hydrate stability zone offshore western Svalbard

Offshore western Svalbard plumes of gas bubbles rise from the seafloor at the landward limit of the gas hydrate stability zone (LLGHSZ; 400 m water depth). It is hypothesized that this methane may, in part, come from dissociation of gas hydrate in the underlying sediments in response to recent warming of ocean bottom waters. To evaluate the potential role of gas hydrate in the supply of methane...

متن کامل

Postglacial response of Arctic Ocean gas hydrates to climatic amelioration.

Seafloor methane release due to the thermal dissociation of gas hydrates is pervasive across the continental margins of the Arctic Ocean. Furthermore, there is increasing awareness that shallow hydrate-related methane seeps have appeared due to enhanced warming of Arctic Ocean bottom water during the last century. Although it has been argued that a gas hydrate gun could trigger abrupt climate c...

متن کامل

Large-Scale Simulation of Methane Hydrate Dissociation along the West Spitsbergen Margin

Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of methane into the atmosphere. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental sl...

متن کامل

Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden

Numerous articles have recently reported on gas seepage offshore Svalbard, because the gas emission from these Arctic sediments was thought to result from gas hydrate dissociation, possibly triggered by anthropogenic ocean warming. We report on findings of a much broader seepage area, extending from 74° to 79°, where more than a thousand gas discharge sites were imaged as acoustic flares. The g...

متن کامل

Large-scale Simulation of Oceanic Gas Hydrate Dissociation in Response to Climate Change

Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015